Annals of Colorectal Research

Published by: Kowsar

Effective Attributes in Colorectal Cancer Relapse Using Artificial Neural Network and Cox Proportional Hazards Regression

Saeedeh Pourahmad 1 , 2 , Bahareh Khosravi 2 and Mohammad Mohamadianpanah 1 , *
Authors Information
1 Colorectal Research Center, Faghihi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Department of Biostatistics, Medical School, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Annals of Colorectal Research: June 30, 2014, 2 (2); e22329
  • Published Online: June 30, 2014
  • Article Type: Research Article
  • Received: July 26, 2014
  • Revised: August 17, 2014
  • Accepted: August 19, 2014
  • DOI: 10.17795/acr-22329

To Cite: Pourahmad S, Khosravi B, Mohamadianpanah M. Effective Attributes in Colorectal Cancer Relapse Using Artificial Neural Network and Cox Proportional Hazards Regression, Ann Colorectal Res. 2014 ; 2(2):e22329. doi: 10.17795/acr-22329.

Abstract
Copyright © 2014, Colorectal Research Center and Health Policy Research Center of Shiraz University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Hoseini S, Moaddabshoar L, Hemati S, Mohammadianpanah M. An Overview of Clinical and Pathological Characteristics and Survival Rate of Colorectal Cancer in Iran. Annals of Colorectal Reaerch. 2014; 2(1)
  • 2. [Official record of cancer in Iran, 1388].
  • 3. Zheng QQ, Wang P, Hui R, Yao AM. Prognostic analysis of ovarian cancer patients using the Cox regression model. Ai Zheng. 2009; 28(2): 170-2[PubMed]
  • 4. Prinja S, Gupta N, Verma R. Censoring in clinical trials: review of survival analysis techniques. Indian J Community Med. 2010; 35(2): 217-21[DOI][PubMed]
  • 5. Bellera CA, MacGrogan G, Debled M, de Lara CT, Brouste V, Mathoulin-Pelissier S. Variables with time-varying effects and the Cox model: some statistical concepts illustrated with a prognostic factor study in breast cancer. BMC Med Res Methodol. 2010; 10: 20[DOI][PubMed]
  • 6. ATA N, DEMĐRHAN, H. . Weighted Estimation in Cox Regression: An Application to Breast Cancer Data. Gazi U Sc J. 2013; 26(1)
  • 7. MA P, A P, M V, B MD, A S, S A, et al. Alternative for the Cox Regression model: using Parametric Models to Analyze the Survival of Cancer Patients. Iranian Canc Prev. 2011; 4(1)
  • 8. Stratford JK, Bentrem DJ, Anderson JM, Fan C, Volmar KA, Marron JS, et al. A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 2010; 7(7)[DOI][PubMed]
  • 9. MT H, HB D, MH B. Neural Network Design: Pws Pub. 1996;
  • 10. Amiri Z, Mohammad K, Mahmoudi M, Parsaeian M, Zeraati H. Assessing the effect of quantitative and qualitative predictors on gastric cancer individuals survival using hierarchical artificial neural network models. Iran Red Crescent Med J. 2013; 15(1): 42-8[DOI][PubMed]
  • 11. Biglarian A, Hajizadeh E, Kazemnejad A, Zali M. Application of artificial neural network in predicting the survival rate of gastric cancer patients. Iran J Public Health. 2011; 40(2): 80-6[PubMed]
  • 12. Ada K, R. Early Detection and Prediction of Lung Cancer Survival using Neural Network Classifier. Int App Innov E manage J. 2013; 2(6)
  • 13. AH H, B B, M R, A B, E Z K. Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival. Int Adv Biol Biomed Res. 2013; 1(10)
  • 14. Zhu L, Luo W, Su M, Wei H, Wei J, Zhang X, et al. Comparison between artificial neural network and Cox regression model in predicting the survival rate of gastric cancer patients. Biomed Rep. 2013; 1(5): 757-60[DOI][PubMed]
  • 15. Ansari D, Nilsson J, Andersson R, Regner S, Tingstedt B, Andersson B. Artificial neural networks predict survival from pancreatic cancer after radical surgery. Am J Surg. 2013; 205(1): 1-7[DOI][PubMed]
  • 16. Ghahramani L, Moaddabshoar L, Razzaghi S, Hamedi SH, Pourahmad S, Mohammadianpanah M. Prognostic Value of Total Lymph Node Identified and Ratio of Lymph Nodes in Resected Colorectal Cancer. . Ann Colorectal Res. 2013; 1(3)
  • 17. Moghimi-Dehkordi B, Safaee A, Zali MR. Prognostic factors in 1,138 Iranian colorectal cancer patients. Int J Colorectal Dis. 2008; 23(7): 683-8[DOI][PubMed]
  • 18. Hai-liang C, Xing-wen Z, Qian L, Hua zZ. COX regression analysis of factors affect prognosis of colorectal cancer with time covariate. Hainan Medic Univ J. 2012; 8(15)
  • 19. Biglarian A, Bakhshi E, Gohari MR, Khodabakhshi R. Artificial neural network for prediction of distant metastasis in colorectal cancer. Asian Pac J Cancer Prev. 2012; 13(3): 927-30[PubMed]
  • 20. Ahmed FE. Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol Cancer. 2005; 4: 29[DOI][PubMed]
  • 21. Kelly MM. Hepatocellular Carcinoma:Targeted Therapy and Multidisciplinary Care. 2010;
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments