Annals of Colorectal Research

Published by: Kowsar

Permissive/Protective Interplay of Microbiota with T Cell Adaptive Immune Response in Colon Cancer

Zahra Mojtahedi 1 , Somayeh Rezaeifard 1 and Zahra Faghih 1 , *
Authors Information
1 Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Article information
  • Annals of Colorectal Research: December 01, 2016, 4 (4); e43883
  • Published Online: November 21, 2016
  • Article Type: Review Article
  • Received: November 14, 2016
  • Accepted: November 15, 2016
  • DOI: 10.17795/acr-43883

To Cite: Mojtahedi Z, Rezaeifard S, Faghih Z. Permissive/Protective Interplay of Microbiota with T Cell Adaptive Immune Response in Colon Cancer, Ann Colorectal Res. 2016 ; 4(4):e43883. doi: 10.17795/acr-43883.

Copyright © 2016, Colorectal Research Center and Health Policy Research Center of Shiraz University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Introduction
2. T Cells and Microbiota in the Colon
3. Microbiota in Favor of Tumorigenesis
4. Microbiota Contribution in Favor of Tumor Protection
5. Conclusion
  • 1. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013; 14(10): 1014-22[DOI][PubMed]
  • 2. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015; 16(4): 343-53[DOI][PubMed]
  • 3. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010; 63(6): 601-10[DOI][PubMed]
  • 4. Souto GR, Queiroz-Junior CM, de Abreu MH, Costa FO, Mesquita RA. Pro-inflammatory, Th1, Th2, Th17 cytokines and dendritic cells: a cross-sectional study in chronic periodontitis. PLoS One. 2014; 9(3): 91636[DOI][PubMed]
  • 5. Duan MC, Zhong XN, Liu GN, Wei JR. The Treg/Th17 paradigm in lung cancer. J Immunol Res. 2014; 2014: 730380[DOI][PubMed]
  • 6. Vipperla K, O'Keefe SJ. Diet, microbiota, and dysbiosis: a 'recipe' for colorectal cancer. Food Funct. 2016; 7(4): 1731-40[DOI][PubMed]
  • 7. De Simone V, Pallone F, Monteleone G, Stolfi C. Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology. 2013; 2(12): 26617[DOI][PubMed]
  • 8. Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol. 2002; 2(6): 389-400[DOI][PubMed]
  • 9. Yadav M, Stephan S, Bluestone JA. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front Immunol. 2013; 4: 232[DOI][PubMed]
  • 10. Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009; 30(5): 646-55[DOI][PubMed]
  • 11. Masoompour SM, Lankarani KB, Honarvar B, Tabatabaee SH, Moghadami M, Khosravizadegan Z. Changing Epidemiology of Common Cancers in Southern Iran, 2007-2010: A Cross Sectional Study. PLoS One. 2016; 11(5): 155669[DOI][PubMed]
  • 12. McAllister F, Housseau F, Sears CL. Microbiota and immune responses in colon cancer: more to learn. Cancer J. 2014; 20(3): 232-6[DOI][PubMed]
  • 13. Russell W. An Address on a Characteristic Organism of Cancer. Br Med J. 1890; 2(1563): 1356-60[PubMed]
  • 14. Kuugbee ED, Shang X, Gamallat Y, Bamba D, Awadasseid A, Suliman MA, et al. Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Dig Dis Sci. 2016; 61(10): 2908-20[DOI][PubMed]
  • 15. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013; 13(11): 800-12[DOI][PubMed]
  • 16. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005; 307(5717): 1915-20[DOI][PubMed]
  • 17. Graf D, Di Cagno R, Fak F, Flint HJ, Nyman M, Saarela M, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis. 2015; 26: 26164[DOI][PubMed]
  • 18. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014; 7(1): 17-44[DOI][PubMed]
  • 19. Cipe G, Idiz UO, Firat D, Bektasoglu H. Relationship between intestinal microbiota and colorectal cancer. World J Gastrointest Oncol. 2015; 7(10): 233-40[DOI][PubMed]
  • 20. Francino MP. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. Front Microbiol. 2015; 6: 1543[DOI][PubMed]
  • 21. Hakansson A, Molin G. Gut microbiota and inflammation. Nutrients. 2011; 3(6): 637-82[DOI][PubMed]
  • 22. Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011; 10(4): 311-23[DOI][PubMed]
  • 23. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9(5): 313-23[DOI][PubMed]
  • 24. Ostman S, Rask C, Wold AE, Hultkrantz S, Telemo E. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006; 36(9): 2336-46[DOI][PubMed]
  • 25. Imaoka A, Matsumoto S, Setoyama H, Okada Y, Umesaki Y. Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. Eur J Immunol. 1996; 26(4): 945-8[DOI][PubMed]
  • 26. Omenetti S, Pizarro TT. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Front Immunol. 2015; 6: 639[DOI][PubMed]
  • 27. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010; 107(27): 12204-9[DOI][PubMed]
  • 28. Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol. 2016; 16(5): 295-309[DOI][PubMed]
  • 29. Ivanov ,I, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009; 139(3): 485-98[DOI][PubMed]
  • 30. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010; 11(1): 76-83[DOI][PubMed]
  • 31. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009; 31(4): 677-89[DOI][PubMed]
  • 32. Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med. 2005; 202(6): 761-9[DOI][PubMed]
  • 33. Godinez I, Raffatellu M, Chu H, Paixao TA, Haneda T, Santos RL, et al. Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine. Infect Immun. 2009; 77(1): 387-98[DOI][PubMed]
  • 34. Wroblewski LE, Peek RM Jr, Wilson KT. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev. 2010; 23(4): 713-39[DOI][PubMed]
  • 35. Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003; 16(1): 1-17[PubMed]
  • 36. Barsoum RS. Urinary schistosomiasis: review. J Adv Res. 2013; 4(5): 453-9[DOI][PubMed]
  • 37. Sripa B, Brindley PJ, Mulvenna J, Laha T, Smout MJ, Mairiang E, et al. The tumorigenic liver fluke Opisthorchis viverrini--multiple pathways to cancer. Trends Parasitol. 2012; 28(10): 395-407[DOI][PubMed]
  • 38. Di Bisceglie AM. Hepatitis B and hepatocellular carcinoma. Hepatology. 2009; 49(5 Suppl)-60[DOI][PubMed]
  • 39. Bartosch B. Hepatitis B and C viruses and hepatocellular carcinoma. Viruses. 2010; 2(8): 1504-9[DOI][PubMed]
  • 40. Sears CL, Pardoll DM. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J Infect Dis. 2011; 203(3): 306-11[DOI][PubMed]
  • 41. Gagniere J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016; 22(2): 501-18[DOI][PubMed]
  • 42. Sobhani I, Amiot A, Le Baleur Y, Levy M, Auriault ML, Van Nhieu JT, et al. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Therap Adv Gastroenterol. 2013; 6(3): 215-29[DOI][PubMed]
  • 43. Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol. 2008; 32(3): 609-17[PubMed]
  • 44. Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res. 1975; 35(2): 287-90[PubMed]
  • 45. Sacksteder MR. Occurrence of spontaneous tumors in the germfree F344 rat. J Natl Cancer Inst. 1976; 57(6): 1371-3[PubMed]
  • 46. Bhattacharya N, Yuan R, Prestwood TR, Penny HL, DiMaio MA, Reticker-Flynn NE, et al. Normalizing Microbiota-Induced Retinoic Acid Deficiency Stimulates Protective CD8(+) T Cell-Mediated Immunity in Colorectal Cancer. Immunity. 2016; 45(3): 641-55[DOI][PubMed]
  • 47. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. MBio. 2013; 4(6): 692-13[DOI][PubMed]
  • 48. Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol. 2016; 22(2): 557-66[DOI][PubMed]
  • 49. Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol. 2015; 1(5): 653-61[DOI][PubMed]
  • 50. Russo E, Taddei A, Ringressi MN, Ricci F, Amedei A. The interplay between the microbiome and the adaptive immune response in cancer development. Therap Adv Gastroenterol. 2016; 9(4): 594-605[DOI][PubMed]
  • 51. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011; 140(6): 1756-67[DOI][PubMed]
  • 52. Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 2008; 222: 129-44[DOI][PubMed]
  • 53. Muranski P, Restifo NP. Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol. 2009; 21(2): 200-8[DOI][PubMed]
  • 54. Dobrzanski MJ. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Front Oncol. 2013; 3: 63[DOI][PubMed]
  • 55. Koelzer VH, Lugli A, Dawson H, Hadrich M, Berger MD, Borner M, et al. CD8/CD45RO T-cell infiltration in endoscopic biopsies of colorectal cancer predicts nodal metastasis and survival. J Transl Med. 2014; 12: 81[DOI][PubMed]
  • 56. Mei Z, Liu Y, Liu C, Cui A, Liang Z, Wang G, et al. Tumour-infiltrating inflammation and prognosis in colorectal cancer: systematic review and meta-analysis. Br J Cancer. 2014; 110(6): 1595-605[DOI][PubMed]
  • 57. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010; 107: 57-117[DOI][PubMed]
  • 58. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010; 127(4): 759-67[DOI][PubMed]
  • 59. Haghshenas MR, Khademi B, Faghih Z, Ghaderi A, Erfani N. Immune regulatory cells and IL17-producing lymphocytes in patients with benign and malignant salivary gland tumors. Immunol Lett. 2015; 164(2): 109-16[DOI][PubMed]
  • 60. Faghih Z, Erfani N, Haghshenas MR, Safaei A, Talei AR, Ghaderi A. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett. 2014; 158(1-2): 57-65[DOI][PubMed]
  • 61. Tokuno K, Hazama S, Yoshino S, Yoshida S, Oka M. Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res. 2009; 29(5): 1527-32[PubMed]
  • 62. Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol. 2012; 22(4): 327-34[DOI][PubMed]
  • 63. Erdman SE, Poutahidis T. Roles for inflammation and regulatory T cells in colon cancer. Toxicol Pathol. 2010; 38(1): 76-87[DOI][PubMed]
  • 64. Ye J, Livergood RS, Peng G. The role and regulation of human Th17 cells in tumor immunity. Am J Pathol. 2013; 182(1): 10-20[DOI][PubMed]
  • 65. Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A, et al. Targeting the Tumor Microenvironment: The Protumor Effects of IL-17 Related to Cancer Type. Int J Mol Sci. 2016; 17(9)[DOI][PubMed]
  • 66. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009; 15(9): 1016-22[DOI][PubMed]
  • 67. Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim HY. Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis. 2012; 33(4): 931-6[DOI][PubMed]
  • 68. De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015; 34(27): 3493-503[DOI][PubMed]
  • 69. Witte E, Witte K, Warszawska K, Sabat R, Wolk K. Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev. 2010; 21(5): 365-79[DOI][PubMed]
  • 70. Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem. 2002; 277(37): 33676-82[DOI][PubMed]
  • 71. Jiang R, Wang H, Deng L, Hou J, Shi R, Yao M, et al. IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer. 2013; 13: 59[DOI][PubMed]
  • 72. So SS, Wan ML, El-Nezami H. Probiotics-mediated suppression of cancer. Curr Opin Oncol. 2016; [DOI][PubMed]
  • 73. Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res. 2015; 142(1): 23-32[DOI][PubMed]
  • 74. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011; 17(12): 1519-28[DOI][PubMed]
  • 75. Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012; 95(1): 50-60[PubMed]
  • 76. Gamallat Y, Meyiah A, Kuugbee ED, Hago AM, Chiwala G, Awadasseid A, et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother. 2016; 83: 536-41[DOI][PubMed]
  • 77. Dwivedi M, Kumar P, Laddha NC, Kemp EH. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev. 2016; 15(4): 379-92[DOI][PubMed]
  • 78. Thakur BK, Saha P, Banik G, Saha DR, Grover S, Batish VK, et al. Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response. Int Immunopharmacol. 2016; 36: 39-50[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments